Application of the Second-kind Chebyshev Polynomials for the Nonlinear Age-structured Population Models
نویسندگان
چکیده
In this paper, we will introduce a method to find a numerical solution of nonlinear age-structured population model using second-kind Chebyshev polynomials. This method convert the nonlinear age-structured population models to an equivalent differential equation. We introduce two variable second-kind Chebyshev polynomials and their basic properties. These properties will be used to reduce the obtained differential equation to the solution of a system of nonlinear algebraic equations. Numerical examples show the accuracy and applicability of our method.
منابع مشابه
A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملA Note on the Convergence of the Homotopy Analysis Method for Nonlinear Age-Structured Population Models
In this paper, a theorem is proved which presents the series solution obtained from the homotopy analysis method is convergent to the exact solution of nonlinear age-structured population models.
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کامل